Emerging optical nanoscopy techniques
نویسندگان
چکیده
To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy.
منابع مشابه
Multicolor fluorescence nanoscopy by photobleaching: concept, verification, and its application to resolve selective storage of proteins in platelets.
Fluorescence nanoscopy provides means to discern the finer details of protein localization and interaction in cells by offering an order of magnitude higher resolution than conventional optical imaging techniques. However, these super resolution techniques put higher demands on the optical system and the fluorescent probes, making multicolor fluorescence nanoscopy a challenging task. Here we pr...
متن کاملEmerging Optical CDMA Techniques and Applications
In this paper we present an in-depth review on the trends and the directions taken by the researchers worldwide in Optical Code Division Multiple Access (OCDMA) systems. We highlight those trends and features that are believed to be essential to the successful introduction of various OCDMA techniques in communication systems and data networks in near future. In particular we begin by giving a c...
متن کاملLabel-free photoacoustic nanoscopy.
Super-resolution microscopy techniques - capable of overcoming the diffraction limit of light - have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging age...
متن کاملNitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing.
Nitrogen-Vacancy (NV) color center in diamond is a flourishing research area that, in recent years, has displayed remarkable progress. The system offers great potential for realizing futuristic applications in nanoscience, benefiting a range of fields from bioimaging to quantum-sensing. The ability to image single NV color centers in a nanodiamond and manipulate NV electron spin optically under...
متن کاملReview of combined isotopic and optical nanoscopy.
Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical mic...
متن کامل